Extending Expectation Propagation for Graphical Models

نویسندگان

  • Yuan Qi
  • Andrew B. Lippman
چکیده

Graphical models have been widely used in many applications, ranging from human behavior recognition to wireless signal detection. However, efficient inference and learning techniques for graphical models are needed to handle complex models, such as hybrid Bayesian networks. This thesis proposes extensions of expectation propagation, a powerful generalization of loopy belief propagation, to develop efficient Bayesian inference and learning algorithms for graphical models. The first two chapters of the thesis present inference algorithms for generative graphical models, and the next two propose learning algorithms for conditional graphical models. First, the thesis proposes a window-based EP smoothing algorithm for online estimation on hybrid dynamic Bayesian networks. For an application in wireless communications, window-based EP smoothing achieves estimation accuracy comparable to sequential Monte Carlo methods, but with less than one-tenth computational cost. Second, it develops a new method that combines tree-structured EP approximations with the junction tree for inference on loopy graphs. This new method saves computation and memory by propagating messages only locally to a subgraph when processing each edge in the entire graph. Using this local propagation scheme, this method is not only more accurate, but also faster than loopy belief propagation and structured variational methods. Third, it proposes predictive automatic relevance determination (ARD) to enhance classification accuracy in the presence of irrelevant features. ARD is a Bayesian technique for feature selection. The thesis discusses the overfitting problem associated with ARD, and proposes a method that optimizes the estimated predictive performance, instead of maximizing the model evidence. For a gene expression classification problem, predictive ARD outperforms previous methods, including traditional ARD as well as support vector machines combined with feature selection techniques. Finally, it presents Bayesian conditional random fields (BCRFs) for classifying interdependent and structured data, such as sequences, images or webs. BCRFs estimate the posterior distribution of model parameters and average prediction over this posterior to avoid overfitting. For the problems of frequently-asked-question labeling and of ink recognition, BCRFs achieve superior prediction accuracy over conditional random fields trained with maximum likelihood and maximum a posteriori criteria. Thesis Supervisor: Rosalind W. Picard Title: Associate Professor of Media Arts and Sciences

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Expectation Propagation for Graphical Models over Strings

We present penalized expectation propagation (PEP), a novel algorithm for approximate inference in graphical models. Expectation propagation is a variant of loopy belief propagation that keeps messages tractable by projecting them back into a given family of functions. Our extension, PEP, uses a structuredsparsity penalty to encourage simple messages, thus balancing speed and accuracy. We speci...

متن کامل

Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference

We propose a novel algorithm to solve the expectation propagation relaxation of Bayesian inference for continuous-variable graphical models. In contrast to most previous algorithms, our method is provably convergent. By marrying convergent EP ideas from [15] with covariance decoupling techniques [23, 13], it runs at least an order of magnitude faster than the most common EP solver.

متن کامل

Approximate inference techniques with expectation constraints

This article discusses inference problems in probabilistic graphical models that often occur in a machine learning setting. In particular it presents a unified view of several recently proposed approximation schemes. Expectation consistent approximations and expectation propagation are both shown to be related to Bethe free energies with weak consistency constraints, i.e. free energies where lo...

متن کامل

A Lower Bound on the Partition Function of Attractive Graphical Models in the Continuous Case

Computing the partition function of an arbitrary graphical model is generally intractable. As a result, approximate inference techniques such as loopy belief propagation and expectation propagation are used to compute an approximation to the true partition function. However, due to general issues of intractability in the continuous case, our understanding of these approximations is relatively l...

متن کامل

Expectation Propagation in Factor Graphs: A Tutorial

Expectation propagation is an important variational inference algorithm for graphical models, especially if some of the variables are continuous. This tutorial presents two views EP: as repeatedly projecting into an approximating family, and as a message-passing algorithm. We present EP in terms of factor graphs, which simplifies some of the presentation and provides concreteness, while remaini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004